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Abstract Sponge systematics has been traditionally
based on the study of the skeleton (spicules and spongin
fibres). However, sponges of the genus Chondrosia are
devoid of those skeletal features, making it difficult to
distinguish between different species in the genus.
Chondrosia reniformis Nardo, 1847, the type species of
the genus, was described from the Mediterranean Sea.
The lack of distinguishing morphological features may
have been responsible for the widespread assignment of
specimens of the genus to this species; as a result
C. reniformis is considered to be a cosmopolitan species.
In this work, populations of C. reniformis from the
western Mediterranean (France) and the West Atlantic
(Bermuda and Brazil) were analysed using allozyme
electrophoresis for 13 enzyme loci. Levels of mean het-
erozygosity were high (Bermuda and Brazil H=0.27 and
W Mediterranean H=0.12), as is often observed in
sponge species. Gene identities observed between West
Atlantic and Mediterranean populations were low
(1=0.40-0.52, typical values for congeneric species),
including the presence of four diagnostic loci. This level
of divergence clearly shows that they are not conspecific.
Hence, a worldwide or cosmopolitan distribution of
C. reniformis would seem improbable. However, the
West Atlantic samples (Bermuda and Brazil) were ge-
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netically similar (gene identity, /=0.88-0.95) over a
distance of 8,000 km. This is the first report of genetic
homogeneity in a sponge species over such a large geo-
graphical distance.

Introduction

Many benthic invertebrate species have been considered
to have a worldwide distribution. This was supported by
a belief that marine invertebrate larvae, often associated
with planktonic dispersal, were able to disperse over
long distances (e.g. Strathmann 1985; Scheltemal986).
The capacity for long-range dispersal of larvae was
usually inferred from a simple calculation, whereby the
laboratory-measured duration of larval life was multi-
plied by average speeds of surface currents (Jablonski
1986). However, larval behaviour (Maldonado and
Young 1996), predation (Olson and McPherson 1987)
and macro- and micro-hydrodynamic aspects of dis-
persal (Cowen et al. 2000) were often ignored in calcu-
lations, and recent studies suggest that larvae often
disperse far less than their potential (Jackson 1986;
Knowlton and Keller 1986; Ayre and Hughes 2000). Not
surprisingly in these cases, genetic studies of supposedly
cosmopolitan taxa have often revealed the presence of
complexes of sibling species (for reviews see, e.g.
Knowlton 1993, 2000; Thorpe and Solé-Cava 1994).
Nevertheless, other studies have revealed surprisingly
little geographic differentiation across large distances in
taxa with limited dispersal potential and which settle
shortly after release (Solé-Cava et al. 1994; Grant and da
Silva-Tatley 1997). No such examples are known for
marine sponges, however, a group whose larvae proba-
bly disperse poorly (Borojevic 1970; Sara and Vacelet
1973; Uriz 1982; for an exception see Vacelet 1999); all
previous genetic analyses of sponge populations have
revealed differentiation across distances ranging from 1
to 2,700 km. Above that distance, the degree of genetic
differentiation typically suggests that supposedly con-
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specific forms merit recognition at the species level (e.g.
Solé-Cava et al. 1991; Boury-Esnault et al. 1992, 1999;
Klautau et al. 1999). The fact that these forms went
unrecognised previously has been attributed to over-
conservative taxonomy, related primarily to the small
number of morphological characters available for clas-
sification, and to an overestimation of the dispersal
ability of sponge larvae (Klautau et al. 1999; Solé-Cava
and Boury-Esnault 1999).

Chondrosia reniformis Nardo, 1847 is the type species
of a genus that is characterised by the absence of skeleton,
the main morphological character used in the systematics
of sponges. This species was described from the Mediter-
ranean Sea, and, since then, it has been allegedly identified
worldwide, including the Indian, Pacific, and East and
West Atlantic Oceans (for a review see Wiedenmayer
1977). C. reniformis is a common species that lives in lit-
toral zones (0-50 m), usually on shaded walls (Wilkinson
and Vacelet 1979). As a result of its ubiquity and ecolog-
ical importance, there are several studies of the biology or
ecology of C. reniformis (e.g. Wilkinson and Vacelet 1979;
Bavestrello et al. 1995, 1998; Sara et al. 1998). Levels of
gene variation have been already estimated within a
Mediterranean population of C. reniformis (Solé-Cava
and Thorpe 1991), and the phylogenetic position of the
genus within the demosponges has been inferred by DNA
sequencing (Chombard 1998; Vacelet et al. 2000). How-
ever, to date, no information is available on the levels of
genetic differentiation between geographically distant
populations of any species of Chondrosia.

C. reniformis, in the Mediterranean, is gonochoric
and oviparous, but it is also known to reproduce asex-
ually (Scalera-Liaci and Sciscioli 1975; Bavestrello et al.
1995, 1998). The dispersal capability of the lecitho-
trophic larva of C. reniformis is probably low, as has
been suggested for many other sponge larvae (Borojevic
1970; Sara and Vacelet 1973; Uriz 1982). Gamete dis-
persal is also likely to be very limited, since, after release,
oocytes remain close to the parent, and spermatozoa are
thought to remain in the water column for a maximum
of only a fewhours (Lévi and Lévi 1976). Recently, high
levels of population structuring (Fst=0.21) along about
2,700 km of Brazilian coast were found in the confa-
milial genus Chondrilla (Klautau et al. 1999). Further-
more, four cryptic species were found within the
supposedly cosmopolitan ““Chondrilla nucula” in the
Brazilian/Caribbean area (Klautau et al. 1999). These
results, once again, point to the low realised dispersal of
sponge larvae, and to the need to re-evaluate genetically
the validity of species with supposedly large geographic
distributions (Thorpe and Solé-Cava 1994).

Allozymes have been used successfully as a comple-
mentary tool in the identification of cryptic species in the
phylum Porifera (reviewed in Solé-Cava and Boury-
Esnault 1999). The general trend observed in these
studies is that speciation in sponges may be accompa-
nied by a much smaller level of morphological diver-
gence than that traditionally considered by systematists
to indicate differentiation at the species level (Klautau

et al. 1994, 1999; Boury-Esnault et al. 1999; Solé-Cava
and Boury-Esnault 1999).

In this paper, we used allozyme electrophoresis to
demonstrate that C. reniformis from the western Atlantic
(Bermuda and Brazil) and from the western Mediterra-
nean (France) are not conspecific. Contrastingly, popu-
lations of western Atlantic “C. reniformis”, separated by
more than 8,600 km, were genetically remarkably simi-
lar. This is the first record of high genetic similarity in a
sponge species over a large geographic distance.

Materials and methods

Sample collection

Between June 1996 and September 1997, 159 individuals of
Chondrosia reniformis (Demospongiae: Chondrillidae) were col-
lected, by snorkelling or SCUBA diving, from nine localities
(Fig. 1) in the western Atlantic: Bermuda (32°18'N; 64°46'W);
Brazil (Recife 08°07’S; 34°52'W; Buzios 22°44’S; 41°53'W; Praia do
Forno 22°58'S; 42°01’W; Angra dos Reis 23°01’S; 44°18'W); and
the Mediterranean, on the French coast (Provence: La Vesse
43°21’N; 05°15°E; Endoume 43°16'N; 05°20’E; Callelongue
43°10’N; 05°23’E; La Ciotat 43°10’N; 05°35’E). Care was taken to
avoid collecting individuals closer than 2 m apart, thus minimising
the probability of collecting clone-mates. Furthermore, the geno-
types of all individuals from each site were compared, treating any
individuals with the same compound genotype as ramets of a single
genet (sensu Harper 1977). This resulted in the exclusion of two
individuals, from the populations of Recife and Forno on the
Brazilian coast.

The specimens were transported alive or on ice to the labora-
tory and stored in liquid nitrogen until required for electrophoresis,
or in 70% ethanol for taxonomic identification.

Geographic distances between sampling sites (measured as
lowest spherical distances by sea), and their co-ordinates, were
calculated using the Microsoft programme “Encarta 99 Atlas™.

Electrophoresis

Horizontal 12.5% starch gel electrophoresis was carried out as
previously described for sponges (e.g. Solé-Cava and Thorpe 1986;
Klautau et al. 1999). The buffer systems used were: 0.10 M Tris,
0.01 M EDTA, 0.10 M maleate, pH 7.4 (TEM; Brewer 1970); and
0.06 M NaOH, 0.30 M borate, pH 8.1 (gel), 0.076 M Tris, 0.005 M
citrate, pH 8.7 (electrode) (POULIK; Poulik 1957). Nine, out of 30,
enzyme systems investigated produced consistent and reproducible
results in all populations: catalase (CAT; EC 1.11.1.6); diaphorase
(DIA; EC 1.8.1.4); esterases (EST; EC 3.1.1.1); hexokinase (HK;
EC 2.7.1.1); malate dehydrogenase (MDH; EC 1.1.1.37); man-
nosephosphate isomerase (MPI;, EC 5.3.1.8); peptidases (PEP;
EC 3.4.1.1); phosphoglucose isomerase (PGI; EC 5.3.1.9); and
phosphoglucomutase (PGM; EC 5.4.2.2). The staining of the gels
followed standard procedures (Manchenko 1994). Non-specific
bands, as previously reported for other sponge species (e.g. Stod-
dart 1989; Boury-Esnault et al. 1992; Klautau et al. 1999), were
observed in all samples. These bands were not used for the genetic
analyses, since their origin remains unclear.

Genotype frequency data were used to estimate gene frequen-
cies, levels of gene variation (heterozygosity, H), fits to Hardy—
Weinberg equilibrium (Fis; Wright 1978), inbreeding indices (Fsr;
Wright 1978), and pairwise unbiased gene identities (/) and dis-
tances (D) (Nei 1978), using the BIOSYS-1 programme, version 1.7
(Swofford and Selander 1981). The significance of Fig (H,:Fis=0)
and Fgp (H,:Fsy=0) were estimated using a y° test (Waples 1987).
Effective number of migrants (N.m) was estimated as
Nem = [(1/Fsr) — 1]/4 (Wright 1978). Although this estimate relies
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Fig. 1 Chondrosia reniformis. Sampling sites

upon a high number of assumptions, like mutation-drift equilibri-
um and neutrality (Bossart and Prowell 1998; Whitlock and
McCauley 1999), it can still be useful, if only as a rough indicator
of present or recent levels of gene flow between populations
(Bohonak et al. 1998; Bohonak 1999; Ayre and Hughes 2000).

As there are large stochastic errors associated with the estima-
tion of gene identities over small numbers of loci (Nei 1987), we
used the UPGMA algorithm (Sneath and Sokal 1973) to construct
a dendrogram of relationships between populations, since this
method has been shown to give better estimates of tree topology
when the variance is large (Nei et al. 1983).

Finally, to investigate whether geographic distances were di-
rectly correlated to genetic distances (Nei 1978) between pairs of
Chondrosia populations, we used a Mantel test, with 1,000 repli-
cates (Sokal and Rohlf 1995).

Results

Gene frequencies and heterozygosity estimates of
Chondrosia reniformis populations are shown in Table 1.
Four of the 13 gene loci observed (CAT-1, EST-1, MDH
and PGM; Table 1) were fixed for different alleles in the

Praia do Formno

2
L Angra dos Reis

populations from the West Atlantic (Bermuda and Bra-
zil) and the western Mediterranean. Consequently, levels
of gene identity between those populations were very low
(7=0.40-0.52; Table 2; Fig. 2). On the other hand, gene
identities between Mediterranean populations, and be-
tween populations from Brazil and Bermuda were high
(7=0.96-0.99 and 7=0.88-0.95, respectively; Table 2;
Fig. 2). Despite their high genetic similarity, C. reniformis
populations were found to be genetically structured both
in the western Atlantic (Fst=0.16; P<0.0001) and the
Mediterranean (Fst=0.13; P<0.0001).

Genotype frequencies did not depart from Hardy—
Weinberg expectations at any of the loci studied
(F1s=0.03-0.10, P>0.70; Fisher’s exact-test, P>0.05 —
using a Bonferroni transformation for multiple tests;
Lessios 1992).

No significant correlation was observed between
geographic distance and genetic differentiation between
Atlantic populations of C. reniformis (Mantel test,
P>0.60; Sokal and Rohlf 1995).
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Table 1 Chondrosia reniformis. Gene frequencies of 13 allozyme loci (N number of individuals analysed; H,, H.: observed and Hardy—
Weinberg expected heterozygosities, respectively)

Locus Bermuda Brazil France
Recife Buzios Forno Angra La Vesse Endoume  Callelongue La Ciotat

CAT-1

&) (16) (7 (6) 19) (13) (%) (25) (14) (©)]

A - - - - - 1.00 1.00 1.00 1.00

B 1.00 1.00 1.00 1.00 1.00 - - - -
CAT-2

N) 1) ) (10) (25) (20) (5) (26) (12) (7

A - 0.07 - - 0.10 0.30 0.32 0.38 0.21

B 0.48 0.72 0.90 0.52 0.60 - 0.33 0.12 0.36

C 0.52 0.21 0.10 0.46 0.30 0.70 0.29 0.38 0.43

D - - - 0.02 - - 0.06 0.12 -
DIA

&) (13) (7 (10) (24 (18) (%) (26) (14) (®)

A 1.00 1.00 0.85 0.94 1.00 1.00 1.00 1.00 0.75

B - - 0.15 0.06 - - - - 0.25
EST-1

™) 13) 3) ® (16) (18) 2 (20) ) (6)

A - - - - - 1.00 1.00 1.00 1.00

B 1.00 1.00 1.00 1.00 1.00 - - - -
EST-2

&) (13) (7) ) (22) (18) ) 9] (14) ®)

A 0.50 1.00 0.50 0.84 0.44 1.00 1.00 1.00 1.00

B 0.50 - 0.50 0.16 0.56 - - - -
EST-3

) (13) (7 ) (22) (18) ©) (28) (14 (®)

A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
EST-4

) (13) (7 ) (22) (18) ©) (28) (14 ®)

A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

HK

) (23) 2 10) (29) (19) @ 21 (€] (®)

A 0.11 - - 0.16 - - 0.07 - 0.12

B 0.33 - - - 0.26 1.00 0.93 1.00 0.88

C 0.41 0.75 0.35 0.36 0.50 - - - -

D 0.13 0.25 0.45 0.48 0.24 - - - -

E 0.02 - 0.20 - - - - - -
MDH

) 17 (6) (10) (35 (1 ©) (28) (14) ®

A 0.12 - 0.35 - - - - - -

B 0.29 0.67 0.35 0.63 1.00 - - - -

C 0.47 0.33 0.30 0.18 - - - - -

D 0.12 - - 0.19 - - - - -

E - - - - - 1.00 0.96 1.00 1.00

F - - - - - - 0.04 - -
MPI

) ) 3) (10) (39) (19) () (20) © &)

A 0.38 - 0.45 0.13 0.18 - - - -

B 0.62 0.17 0.30 0.79 0.37 - - - -

C - 0.83 0.25 0.08 0.45 - 0.28 - 0.33

D - - - - - 1.00 0.72 1.00 0.67
PEP

) (2D (7 (10) (31 (20 2 @n ® ®)

A 0.05 - 0.25 0.08 - - - - -

B 0.50 1.00 0.60 0.79 0.98 1.00 1.00 1.00 1.00

C 0.45 - 0.15 0.13 0.02 - - - -
PGI

&) (22) (7) (10) (39 (19) “4) (28) (13) ®

A 0.28 0.21 0.15 - - - - - -

B 0.18 0.43 0.30 0.46 - - - 0.04 -

C 0.27 0.36 0.55 0.21 0.47 0.25 0.23 0.61 -

D 0.27 - - 0.18 0.35 0.75 0.57 0.35 0.56

E - - - 0.15 0.18 - 0.20 - 0.44
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Locus Bermuda Brazil France
Recife Buzios Forno Angra La Vesse Endoume  Callelongue La Ciotat

PGM

) (12) (7) (10) (30) an ) (28) (14) ®)

A - 0.07 - 0.03 - - - - -

B 1.00 0.93 1.00 0.97 1.00 - - - -

C - - - - - 1.00 1.00 1.00 1.00

H, 0.31 0.18 0.31 0.22 0.15 0.08 0.14 0.09 0.13

H, 0.32 0.20 0.33 0.27 0.23 0.07 0.15 0.09 0.18

. . comprise at least two species is, therefore, not surprising,
Discussion

The low genetic identity (/=0.40-0.52) and the presence
of four diagnostic loci between populations of Chondr-
osia reniformis from the western Atlantic (Bermuda and
Brazil) and from the western Mediterranean clearly
demonstrate that these are reproductively isolated and
are evolving independently and, therefore, must be
considered as separate biological species. Since the type
locality of C. reniformis is the Mediterranean (Adriatic
Sea), that species name must be associated with the
Mediterranean samples, and, pending a formal descrip-
tion of the new species, we will refer to the western
Atlantic specimens of “C. reniformis” as Chondrosia sp.

It could be argued that Chondrosia sp. might in fact
be conspecific with one of the two Chondrosia species
already cited for the tropical Atlantic region: C. plebeja
Schmidt, 1868 or C. collectrix Schmidt, 1870. However,
Chondrosia sp. is morphologically distinct from those
two species (Table 3) and, indeed, from any other spe-
cies of the genus Chondrosia. Therefore, the specimens
from Bermuda and Brazil analysed here may be pre-
sumed to belong to a new species of Chondrosia, with a
wide distribution in the western Atlantic. Chondrosia sp.
and C. reniformis are morphologically virtually identical.
Detailed descriptions of both species will be presented
elsewhere.

The West Atlantic Oceanand the Mediterranean Sea
belong to different biogeographic provinces, separated
by large geographic distances and complex oceanic cir-
culation patterns (Cuesta and Schubart 1998). The
finding that amphi-Atlantic C. reniformis populations

and is well within what seems to be the normal pattern
for genetic comparisons of ‘“‘cosmopolitan” sponge
species (for review see Solé-Cava and Boury-Esnault
1999). In contrast, populations of Chondrosia sp. from
Bermuda and Brazil were found to be genetically similar
over a distance up to 8,600 km (/=0.88-0.95).

The levels of gene identity observed between the
Brazilian and Bermudan Chondrosia sp. were within the
normal range observed in comparisons between con-
specific populations (Thorpe and Solé-Cava 1994; Solé-
Cava and Boury-Esnault 1999). Fgr values, although
significantly different from zero, indicated a migration
rate between sub-populations greater than one individ-
ual per generation (Nem=1.27). A high genetic simi-
larity is usually interpreted as the result of present day
gene flow between localities, although this may be sur-
prising for a marine sponge with supposedly low dis-
persal capabilities. There are, however, alternative
explanations, based on violations of the assumptions of
the gene flow/population structuring models (absence of
selection, and drift/mutation/inbreeding equilibrium).
For example, populations are unlikely to be in equilib-
rium if they have originated recently, as in the case of
anthropogenic-mediated bioinvasions (Holland 2000),
or when they have undergone drastic and recurrent
changes in size along their history(Lessios et al. 1994;
Grant and da Silva-Tatley 1997). In such cases, levels of
gene flow between populations will be greatly overesti-
mated, because those populations simply have not had
enough time to diverge (for a discussion of the problems
of non-equilibrium processes see Davies et al. 1999).
Anthropogenic transport has now been reported for

Table 2 Chondrosia reniformis. Unbiased genetic distances (below diagonal) and gene identities (above diagonal) (Nei 1978) between

populations

Population 1 2 3 4 5 6 7 8 9

1. Bermuda ] 0.882 0.947 0.945 0.918 0.482 0.491 0.478 0.475
2. Recife 0.126 KRAAK 0.930 0.937 0.940 0.469 0.525 0.492 0.512
3. Buzios 0.054 0.073 EEE TR 0.933 0.932 0.404 0.454 0.438 0.436
4. Forno 0.057 0.065 0.070 *AEEK 0.934 0.475 0.497 0.476 0.492
5. Angra 0.086 0.062 0.071 0.068 EEE T 0.483 0.518 0.491 0.503
6. La Vesse 0.730 0.756 0.907 0.745 0.729 FHHAK 0.985 0.988 0.974
7. Endoume 0.712 0.644 0.791 0.699 0.657 0.015 Ho KAk 0.984 0.995
8. Callelongue 0.739 0.710 0.825 0.743 0.711 0.012 0.016 $o KA K 0.961
9. La Ciotat 0.745 0.669 0.829 0.708 0.688 0.027 0.005 0.040 Hokkk ok
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Fig. 2 Chondrosia reniformis.
UPGMA dendrogram based on
gene identities (Nei 1978) be-
tween populations

Angra

Recife
Brazil

Forno

I

Buzios

Bermuda

France

Callelongue

La Ciotat
’_‘ Endoume

La Vesse

| 1 | s s y ! |

many marine invertebrate species and has been used as
the main explanation for the unexpected increases in
distribution (Holland 2000). However, no sponge larvae
have been reported in the ballast water of cargo ships
(e.g. Carlton and Geller 1993), and rafting seems to be
very rare for sponges(for an exception see Maldonado
and Uriz 1999); also, C. reniformis has never been con-
sidered a fouling species (Sara and Orsi 1974). More-
over, invading populations usually have reduced levels
of heterozygosity due to founder effects (Davies et al.
1999), whereas the populations of Chondrosia sp. studied
here had higher levels of gene variation than those of C.
reniformis from the Mediterranean Sea (Table 1).

An alternative explanation for the high genetic simi-
larity observed could be a non-neutrality of the molec-
ular markers used. For example, the low levels of gene
differentiation found between populations of Crassos-
trea virginica from the Atlantic coastof the USA and the
Gulf of Mexico were interpreted as resulting from high
dispersal of oyster larvae (Buroker 1983). However,
subsequent genetic studies, using mitochondrial DNA
and nRFLPs, revealed high genetic differentiation be-
tween these C. virginica populations (Reeb and Avise

Table 3  Chondrosia spp. Diagnostic characters between species
cited in the amphi-Atlantic region. “Inclusions” are calcareous
fragments (sand grains), foreign spicules, corals, etc. [References: /

|
T T T 1 t t T T 1

0.60 0.70 0.80 0.90 1.00

1990; Karl and Avise 1992, but see McDonald et al.
1996). The discrepancy between those studies was ex-
plained as the result of balancing selection acting on the
allozyme loci (Reeb and Avise 1990, but see Hare and
Avise 1998). However, in the case of Chondrosia sp., it is
very difficult to envisage a homogeneous balancing se-
lection scenario at so many gene loci and over such a
wide geographical range.

It appears, thus, that in the absence of evidence for
balancing selection or for anthropogenic-mediated
dispersal, the high genetic similarity observed between
Chondrosia populations along the Atlantic coast of
North and South America should be interpreted as the
result of the recent or current maintenance of some
gene flow (N.ma:1) between populations from those
localities. This estimated effective number of migrants
is usually considered to be sufficient to preclude sig-
nificant long-term differentiation between populations
(Wright 1978). Nevertheless, the populations of
Chondrosia sp. studied do not seem to constitute a
single panmictic population, displaying significant Fst
values. Similar levels of population structure
(Fst=0.05-0.36) were found for dictyoceratid sponge

Topsent (1896); 2 Topsent (1929); 3 Laubenfels (1936); 4 Mothes de
Moraes and Bastian (1993); 5 Topsent (1918); 6 Wiedenmayer
(1977); 7 present work]

Species Cortex Inclusions Type locality Cited locality Ref.
C. reniformis Smooth, Rare Adriatic Mediterranean 1,2,7
Nardo, 1847 1-3 mm thick
C. collectrix Irregular, Sometimes present Caribbean West Atlantic: Bermuda, 3,4
Schmidt, 1870 0.25 mm thick in cortex or Caribbean and Brazil
choanosome (NE)
C. plebeja Polygonal folds, Present in abundance Algeria Mediterranean, tropical 5,6
Schmidt, 1868 1-10 mm thick in cortex or East Atlantic and
choanosome Caribbean
Chondrosia sp. Smooth, Absent - West Atlantic: Brazil 7
present paper 1-2 mm thick and Bermuda




species in Australia, but over a smaller geographic
scale (700 km; Benzie et al. 1994).

Although the high genetic similarity over a large area
is unexpected given the supposedly low dispersal capa-
bility of the larvae of C. reniformis (Lévi and Lévi 1976),
this is not an isolated case among marine invertebrates.
Genetic mixing of anti-tropical planktonic foraminifer-
an populations of three subpolar species was recently
revealed by rDNA analysis. In those species at least one
identical genotype was found in both Arctic and
Antarctic regions, and bipolar populations of each
species clustered tightly together in a phylogenetic
analysis (Darling et al. 2000). Also, sea anemone pop-
ulations of Actinia bermudensis, from Bermuda and
along 2,000 km of Brazilian coast, have a relatively high
genetic identity (/=0.82), and were, hence, considered
to be conspecific (Vianna 1999). That result was also
unexpected considering the low dispersal capabilities of
A. bermudensis (Russo et al. 1994; Monteiro et al. 1998).
A similar result has been found, although on a smaller
scale, in an East Atlantic sea anemone species (Urticina
eques) with short-lived crawling larvae, for which pop-
ulations from the North and Irish Seas (1,200 km apart)
were found to be genetically very similar (/> 0.95; Solé-
Cava et al. 1994).

The Brazilian and the Caribbean areas have been
considered by many authors as parts of the same bio-
geographic province, due to their faunal similarities
(Ekman 1953). It has been suggested that some genetic
interchange has occurred between the two areas since the
Pliocene (Vermeij and Rosenberg 1993). Such inter-
change could be facilitated, for example, by the almost
continuous sub-littoral reef belt that exists along the
north-eastern coast of South America up to the Carib-
bean (Kempf 1970, 1974). Therefore, reefs could form a
bridge that would facilitate gene transfer between
North- and Southwest Atlantic populations of Chondr-
osia sp. (although no correlation was found in our data
between geographic and genetic distances) and other
tropical benthic invertebrates. On the other hand, some
supposed pan-American tropical Atlantic species have
turned out to be, on closer scrutiny, complexes of dif-
ferent biological species (e.g. Sarver et al. 1998; Klautau
et al. 1999). Other molecular studies are clearly needed
to evaluate the degree of endemism of the benthic faunas
of the tropical area of the North- and Southwest
Atlantic coasts.

Since the West Atlantic sponge populations, origi-
nally attributed to C. reniformis, are genetically dif-
ferent from Mediterranean C. reniformis, it is unlikely
that other citations of this species, in more distant
places like Indonesia, the Red Sea and the Galapagos
are correct. It is possible that C. reniformis, as with
Chondrilla nucula, will become recognised as a species
complex. Nonetheless, the high genetic similarity ob-
served between Chondrosia sp. populations from widely
separated areas in the West Atlantic shows that at least
some sponge species may have a wide geographical
distribution.
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