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Abstract Cliona delitrix is a very destructive coral-exca-
vating sponge in Caribbean coral reef systems, particu-
larly for Montastraea species. Little is known about how
these excavating sponges propagate across coral reefs. In
this study a hypothesis was tested that coral breakage
caused by the bioeroding activity facilitates the asexual
propagation of this sponge and in turn favors the spread
of the most aggressive sponge genotypes. An allozyme
analysis, involving 12 loci systems of 52 sponge indi-
viduals from a total of 13 Montastraea heads, found that
no two sponges possessed identical multi-locus geno-
types. Contrary to the pattern expected for fragmenting
species, the incidence of clonality and asexual propaga-
tion at the population level was minimal. The lack of
correlation between genetic and physical distances for
the studied sponges also suggests that population
maintenance appears to derive from larval dispersal,
with a spatial range of dispersal larger than the average
distance between the coral heads (10-10% m).
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Introduction

Some demosponges have the ability to excavate calcium
carbonate substrata, such as the skeletons of sclerac-
tinian corals, producing galleries in which most of the
sponge body is lodged (e.g., Riitzler 2002). Because only
inhalant papillae and exhalant oscules extend outside the
galleries, the degree to which a calcareous substrate is
internally invaded by excavating sponges is hard to
estimate from external observation. As the sponge bores
and grows inside a coral head, the skeletal structure
progressively weakens to the stage at which it breaks
into pieces. Fragmentation and disintegration of coral
skeletons invaded by bioeroding sponges is accelerated
by heavy storms, hurricanes, and any other source of
physical stress (Tunnicliffe 1981; Highsmith 1982; Riit-
zler 2002). This breakage and dispersal of coral frag-
ments may spread copies of not only the coral genotype
but also the sponges living inside the coral skeleton
(Tunnicliffe 1981; Schonberg and Wilkinson 2001).
Processes facilitating coral fragmentation, therefore,
should also favor population maintenance of excavating
sponges by an asexual propagation.

Although the activity of boring sponges has long
been recognized as important to the ecological economy
of coral reefs, very little is known about population
dynamics of these sponges and the processes by which
they propagate across coral reef systems. In this study,
we provide a preliminary assessment of the relative
contribution of asexual and sexual propagation to
population maintenance in Cliona delitrix Pang 1973, a
very destructive demosponge that is common in Carib-
bean reefs (Pang 1973; Rose and Risk 1985).

Cliona delitrix often inhabits massive scleractinians,
such as Diploria labyrinthiformis, Montastraea cavern-
osa, and Siderastrea siderea, where it has been reported
to excavate large galleries extending 10—12 cm deep into
the coral skeleton (Pang 1973) or deeper (M. Maldo-
nado, personal observation). The real extent of the
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gallery system of a sponge individual and the limits
within the galleries of genetically different individuals
are difficult to estimate by any direct, non-destructive
method (Schénberg 2001). It remains unclear, therefore,
whether the inhalant and exhalant orifices found on
different areas of large coral heads belong to several
different C. delitrix individuals or just to a single, highly
branched individual.

The ability to reproduce asexually appears to be
ecologically advantageous to sessile organisms (May-
nard-Smith 1992), and is a common process among
marine invertebrates. Asexual propagation is expected to
be particularly efficient in sponges, because many of their
cell types are totipotent and able to regenerate as new
small individuals (e.g., Simpson 1984; Maldonado and
Uriz 1999a). Furthermore, asexual reproduction may
interact synergistically with sexual reproduction to in-
crease the dispersal efficiency and the chances of suc-
cessfully colonizing distant habitats (Maldonado and
Uriz 1999b). The asexual spread of coral-excavating
sponges through coral fragmentation could have a rele-
vant role on the population dynamics and genetic evo-
lution of these sponges. This is particularly true if only
one sponge genotype is able to recruit on each coral head,
as shown for Pione vastifica boring on North-Atlantic
scallop shells (Barthel et al. 1994). If this is the case in
Caribbean C. delitrix, then those genotypes that bore
more efficiently are predicted to cause coral fragmenta-
tion often, obtaining enhanced dispersal and higher fre-
quencies in the reef population at the expense of a
decrease in genetic diversity. In this study, allozymes
were used to examine whether Montastraea coral heads
are inhabited by one or more genotypes of C. delitrix and
estimate the incidence of clonality at the population level.

Materials and methods
Sampling

During October and November 2001, this study investi-
gated a C. delitrix population established in a patch reef
characterized by large heads of Montastraea annularis and
M. cavernosa scattered over a bed of Thalassia testudinum
located at the lee side of Lee Stocking Island (Exuma
Cays, The Bahamas). A total of 13 large coral colonies
were selected, which were spread over a total study area of
approximately 1 km? (Fig. 1). Ten coral colonies were
located within a 100 mx100 m subarea (Boomerang site
= Bm site), while the remaining three were close to each
other, forming a group (Tug-and-Barge site = Tb site)
about 800 m apart from the former (Fig. 1).

Allozyme analyses
To verify whether each coral head was excavated by one

or more sponge genets, pieces of the sponge choanoso-
mal tissue were sampled from the larger galleries directly

800m from Bm

25m
' 0100

Fig. 1 Schematic representation of the 13 coral heads and boulders
of Montastraea cavernosa and Montastraea annularis, showing the
geographic (above) and genetic (below) distances. Only some of the
measured distances are depicted; Bm Boomerang Point and 7h Tug
and Barge reef. Some groups of coral boulders are fragments of
old, larger coral heads that could be recognized based on their
shape and relative position. Those coral groups are: Head 1 =
Bml, Bm2, and Bm3; Head I = Bm5, Bm6, and Bm7; Head I11 =
BmS8, Bm9, and Bm10

underneath the inhalant papillae and oscules. Because
Montastraea colonies around Lee Stocking Island were
heavily infested by C. delitrix, it was possible to select 13
heads, in which the sponge was visible at several points
of the coral head. Four samples were collected per head,
making a total of 52 samples. Minimum between-sample
distance on each coral head was 0.25 m, with sponge
samples located on different sides of head and boulders
whenever possible. Distances between coral heads were
estimated (£50 cm) by direct measurement using an
underwater metric line.

Immediately after collection, tissue samples were
carefully dissected to avoid accidental contamination by
small invertebrates which might have been living inside
the sponges. Cleaned samples were then frozen on dry
ice and stored in liquid nitrogen. Allozymes of C. delitrix
were analyzed through horizontal 12.5% starch gel
electrophoresis, using a Tris"fEDTA-maleate pH 7.4 as
buffer (Hillis et al. 1996) and following the standard
methodology described elsewhere (Solé-Cava and



Thorpe 1986). Enzyme staining procedures followed
Manchenko (1994). Thirty enzyme systems were tested,
of which nine gave clear resolution and reproducibility:
acid phosphatase (ACP, EC 3.1.3.2), adenilate kinase
(AK, EC 2.7.1.20), catalase (CAT, EC 1.11.1.6),
a-esterase (x-EST, EC 3.1.1.1), hexokinase (HK, EC
2.7.1.1), malate dehydrogenase (MDH, EC 1.1.1.37),
peptidases (PEP, EC 3.4.1.1) with two different sub-
strates, PEP I (Phe-Pro), PEP II (Leu-Ala), phosphog-
luconate dehydrogenase (PGD, EC 1.1.1.44), and
phosphoglucose isomerase (PGI, EC 5.3.1.9). Banding
patterns were interpreted as the expression of 12 puta-
tive gene loci. All analyses were performed at least three
times for each individual, placing them at different
positions on the gel to ensure a reliable scoring of the
putative alleles.

It was considered that two sponges were clone mates,
whenever they yielded a banding pattern indicating
identical genotypes over all loci. Allele frequencies,
heterozygosities, deviations from Hardy—Weinberg
equilibrium (Fig; Weir and Cockerham 1984), and link-
age disequilibria (Weir correlation coefficient) were cal-
culated using Genetix 4.02 software (Belkhir et al. 1996),
applying Bonferonni corrections when needed. The
relationships among the sponge subpopulations were
investigated by comparing metric and genetic (Nei 1978)
distances between groups of sponges from different coral
heads, using the Mantel test available through the IBD-
SW Software (Bohonak 2002).

Results and discussion

From a total of 52 analyzed tissue samples, 47 provided
interpretable results (36 from Bm site and 11 from Tb
site, Table 1). No two individuals possessed identical
multi-locus genotypes. The most parsimonious expla-
nation for this result is that the 47 assayed sponges re-
cruited from sexual propagules (i.e., free-swimming
larvae), with no occurrence of clonality due to asexual
processes (Table 1). For those coral heads in which the
four tissue samples gave interpretable results, the con-
sistent pattern was that each sample corresponded to a
different sponge genotype, even when samples were only
25 cm apart from each other. In the case of C. delitrix,
the bioeroding process leading to the potential frag-
mentation of a coral head appears to favor neither the
asexual spread of some particular genotypes nor the
population maintenance by asexual propagation. The
absence of clonality in C. delitrix within the spatial range
of our study does not necessarily mean that asexual
reproduction is irrelevant in all excavating sponges.
Recent studies suggest that boring sponges appear to be
more conspicuous after storms or during periods of
stressful conditions in the reef (Lopez-Victoria and Zea
2004). Dispersal of boring sponges can be higher
in those colonizing branching corals, which break
and disperse more readily in storms (Schénberg and
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Wilkinson 2001), although, it is not clear if this is the
direct result of dispersal or simply results from differ-
ential mortality.

The occurrence of multiple genotypes of C. delitrix
per head strongly contrasts with the pattern shown by
the sponge Pione vastifica when infesting scallop shells,
since each shell was found to be occupied by just one
sponge individual (Barthel et al. 1994). This could result
from ecological differences between temperate areas,
where P vastifica occurs, and the tropical C. delitrix.
However, the observed difference could also be easily
explained as a result of host size differences. In the small
scallop shells (<10 cm) spatial competition is expected
to be intense and the development of mechanism facili-
tating pioneering recruits to prevent settlement of sub-
sequent recruits cannot be ruled out (Hardin 1960). In
contrast, coral boulders offer substrate areas far larger
(>2 m in diameter) which reduces the chances of direct
spatial interaction when several genotypically distinct
sponges co-occur.

C. delitrix exhibited high mean heterozygosities
(Bm:H.=0.444, H,=0.381; Tb:H.=0.425, H,=0.325)
at the two studied sites, which, in turn, is a common
feature among invertebrates, particularly in sponges
(Solé-Cava and Thorpe 1991; Boury-Esnault and Solé-
Cava 2004). Additionally, sponges from both sites dis-
played significant heterozygote deficits (F;s=0.150 and
0.244 for Bm and Tb sites, respectively). Such deficits
also seem to be common in populations of sponges and
other marine invertebrates (Ayre and Dufty 1994; Miller
et al. 2001). Observed heterozygote deficits could also
result from miscoring of heterozygotes (France 1994),
but this is highly unlikely, since we analyzed each indi-
vidual at least three times to ensure reliable allele iden-
tification. However, we cannot discount the possibility
that selection against heterozygotes (Borsa et al. 1992),
the presence of null alleles (Foltz 1986), aneuploidy
(Zouros and Foltz 1984), Wahlund effect, and/or
inbreeding (Wallace 1981) have some role in causing the
observed patterns of heterozygote deficits. We found no
evidence of linkage disequilibrium between loci
(P>0.05).

Genetic distances between coral heads varied between
0.0001 and 0.330. This latter value is quite high for
comparisons among conspecific populations (Thorpe
and Solé-Cava 1994), although intraspecific levels of
genetic distances in sponge populations tend to be higher
than for other organisms (Solé-Cava and Boury-Esnault
1999). More likely, the high distances result from the
high variances of gene distances when using small
numbers of individuals (2-4 per coral head). Genetic
distances were not significantly correlated with geo-
graphical distances (Mantel test; r=0.201, P>0.05;
Fig. 1) among heads. This pattern suggests that larval
settlement is unlikely to be philopatric and that the
average spatial range of larval dispersal is larger than the
average distance between coral heads within the range of
this study.
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Table 1 Genotypes of all analyzed individuals of Cliona delitrix from the two sites in the Bahamas

Samples ACP AK PGD MDHI1 CAT PGI PEP1 PEP2 EST1 EST2
Bml-1 cc ab bb bb aa aa bb bb ab dd
Bml-3 cc bd bb bb - aa - - ab bd
Bm2-1 cc bc ab ab — ab ab aa ab dd
Bm2-2 cc bc - ab - aa ab - ab dd
Bm2-3 - bc bb - ab aa - - bb dd
Bm2-4 cd bc bb aa - bb ab - bb dd
Bm3-1 dd bb ab ab aa ab ab aa ab dd
Bm3-2 cc - ab bb bc ab aa bb - cd
Bm3-3 cd bb aa ab bc ab ab aa ab cd
Bm3-4 cc bb bb aa bb aa - cc - dd
Bm4-1 cd ab aa aa ab ab bc aa ab dd
Bm4-2 cd bc ab ab ab bb bc bb ab dd
Bm4-3 cd ab bb ab aa ab bc bb aa dd
Bm5-1 cc ac aa bb aa aa bc aa aa dd
Bm5-2 cc ac ab aa ab aa ab aa aa cd
Bm5-3 cd ac aa aa ab aa aa ab bb cc
Bm6-1 cd bc aa aa ab ab cc ab ab ad
Bm6-2 cd ab ab bb ab ab bc ab ab ad
Bm6-3 cc bc aa aa bb ab bc ac ab ad
Bm6-4 dd bc ab ab ab aa bb bc bb aa
Bm7-1 cd bb aa ab ab bb ab be aa bd
Bm?7-2 cd bb ab ab bb aa bb cc ab dd
Bm7-3 dd bb bb aa cc aa ab cc bb dd
Bm7-4 dd bc ab bb bb aa ab dd aa dd
Bm8-1 cd cd bb bb cc aa bb - bb dd
Bm3-2 cd bc - bb ab bb - - bb dd
Bm38-3 cd bb bb aa - aa - - ab dd
Bm38-4 cc bb aa bb cc aa ab bc bb dd
Bm9-1 cc - aa aa - ab - - ab dd
Bm9-2 cc bb aa ab aa ab ab - ab dd
Bm9-3 cd bb ab ab aa ab ab dd aa dd
Bm9-4 cd bb bb ab - aa - - bb dd
Bm10-1 cd bb aa aa bb aa bc - ab cd
Bm10-2 cd cc aa ab - ab bc - ab dd
Bm10-3 cd bb bb aa aa ab bb bc ab cc
Bm10-4 cd bb bb bb bb ab bc bc ab cd
Tbl-1 cc ab bb aa bb bb bc cc ab dd
Tbl-2 cc bd ab aa ab bb bb ab ab dd
Tb1-3 cc ab bb aa ab bb bb ab ab bd
Tbl-4 cc ab ab aa ab bb bb bb bb dd
Tb2-1 - bb bb bb aa bb - - bb dd
Tb2-2 cd cd cc ab bb bb ab bb bb dd
Tb2-3 cd bc bc ab ab ab ac bc ab dd
Th3-1 dd bc bb aa aa aa ac ac bb dd
Tb3-2 — cc cc aa - aa ab - aa dd
Tb3-3 dd bb ab aa aa ab ac ac ab dd
Tb3-4 dd bb bb - aa - - - - bb

Bm Boomerang Point; 7h Tug and Barge reef. Samples are numbered according to the coral head numbers depicted in Fig. 1, such that,
Bm 1-1 and Bm1-2 are two samples from coral head Bm1. Monomorphic loci MDH 2 and HK are not shown
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